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ON A GAS SOURCE IN A CONSTANT FORCE FIELD

UDC 533; 517.92517.944D. V. Parshin1 and A. P. Chupakhin2

The nonbarochronic regular partially invariant submodel of the equations of gas dynamics is studied.
The submodel reduces to an implicit ordinary differential equation of the first order for an auxiliary
function X = X(x). The physical quantities (velocity, density, and pressure) are expressed in terms
of the function X. The properties of the solutions of the equation are investigated and interpreted
physically in terms of gas motion. The existence of a shock-wave solution is proved. The properties
of the shock adiabat are studied. It is shown that the results obtained are new and differ significantly
from the results for the case of no constant force.

Key words: partially invariant solution, discriminant curve, jet space, irregular singular point,
projective change, sonic line, stationary shock wave.

Introduction. Group analysis of differential equations [1] is an effective method for constructing broad
classes of exact solutions of models of continuum mechanics, in particular, gas dynamics. Ovsyannikov [2] studied
the exact solution of the equations of gas dynamics that describes the two-dimensional motion of a gas in a force field
with a constant acceleration (gravity). This motion is generated by the regular partially invariant submodel defined
by 4-dimensional algebra with the addition of the external force to the first equation of momentum. Chupakhin
[3] described the corresponding submodel for the case where the force is absent. Stanyukovich [4] considered gas
motion in the presence of external potential forces described by a simple wave. The proposed solution does not
reduce to a simple wave and is a new one.

The solutions corresponding to different regimes of gas motion for different ratios of kinetic and potential
energies are studied. The mathematical model reduces to an implicit differential equation of the first order. The
properties of similar equations are described by Arnol’d [5].

1. Description of the Model. The algebra generating the solution has the basis L4 = 〈∂y, ∂z, t∂y+∂v, ∂t〉.
The invariants of this submodel are x, u, w, ρ, p, and S, where u and w are the velocity components; the thermo-
dynamic parameters ρ, p, and S are the density, pressure, and entropy, respectively. The superfluous function is
the velocity component v. The solution is represented as

u = u(x), v = v(t, x, y, z), w = w(x), (ρ, S, p) | x.

The equations of the submodel are written as

uu′ + ρ−1p′ = g0, vt + uvx + vvy + wvx = 0, uw′ = 0,

uρ′ + ρ(u′ + vy) = 0, uS′ = 0,
(1.1)

where g0 = const and g0 �= 0; the prime denotes differentiation with respect to x.
Let us consider the case u �= 0. In this case, submodel (1.1) describes isentropic gas motion S = s0 = const. In

addition, the third equation of (1.1) implies that w = W0 = const, and the fourth equation implies the representation

v = h(x)y + V (t, x, z), (1.2)
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where

h = −(u(lnρ)′ + u′). (1.3)

Substituting representation (1.2) into the second equation of (1.1) and splitting the resulting relations in y,
we obtain

uh′ + h2 = 0; (1.4)

Vt + uVx + W0Vx + hV = 0. (1.5)

The first and third equations in (1.1) and Eqs. (1.3) and (1.4) form an invariant subsystem. The overdeter-
mined system for the noninvariant component which includes the second and fourth equations of (1.1) is split into
the invariant equation (1.4) and Eq. (1.5) for the noninvariant part. After integration of the invariant subsystem,
Eq. (1.5) is integrated as a linear equation.

Integration of the invariant system can be reduced to solving a first-order ordinary differential equation and
several quadratures. We introduce the function σ = σ(x) (σ �= const) such that σ = 1/h. Then, Eq. (1.4) becomes
uσ′ = 1 and we obtain the representation

u = 1/σ′, h = 1/σ. (1.6)

In terms of the function σ(x), the continuity equation (1.3) is written as (ln ρ)′ − σ′′/σ′ + σ′/σ = 0 and is
integrated:

ρ = R0|σ′/σ|, R0 = const. (1.7)

The function σ = σ(x) is a solution of the first equation of momentum in (1.1), and integrating it, we obtain the
invariant Bernoulli integral:

u2/2 + I(ρ) = g0x + b0. (1.8)

Here

I(ρ) =
∫

dp/ρ

is the enthalpy of the gas. For a polytropic gas, p = S0ρ
γ (the motion is isentropic). Substitution of (1.6) and (1.7)

into (1.8) yields

1
2(σ′)2

+
c2
0

γ − 1

∣∣∣σ′

σ

∣∣∣γ−1

= g0x + b0, (1.9)

where c2
0 = γS0R

γ−1
0 = const.

The integrals of Eqs. (1.5) are expressed in terms of the function σ = σ(x) by finite formulas. As a result,
we have a solution of the form

u =
1
σ′ , v =

y + H(ξ, η)
σ

, w = W0, ρ = R0

∣∣∣σ′

σ

∣∣∣, S = S0, p = S0ρ
γ , (1.10)

where H is an arbitrary function of the arguments ξ = t− σ(x) and η = z −W0t and W0, R0, and S0 are arbitrary
constants. The function σ = σ(x) satisfies Eq. (1.9).

2. Key Equation. Equation (1.9) can be written as

(σ′)2
∣∣∣σ′

σ

∣∣∣γ−1

− g0(γ − 1)
c2
0

(
x +

b0

g0

)
(σ′)2 +

γ − 1
2c2

0

= 0. (2.1)

Theorem 1. The dimension of the bundle of integral curves for the key equation (2.1) does not exceed four
for an arbitrary rational exponent γ > 1.

Proof. The key equation (2.1) for any rational exponents γ is an algebraic equation for the derivative or is
reduced to this by a change of variables.

The number of positive real roots can be estimated using the Descartes’ rule, according to which the number
of positive real roots of a polynomial does not exceed the number of sign changes in the sequence of its coefficients [6].
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Taking into account that the rational number γ > 1, we consider all possible cases:

γ = 2m, γ = 2m + 1, γ =
2m

2n + 1
, γ =

2m + 1
2n

, γ =
2m + 1
2n + 1

(2.2)

(m and n are natural numbers).
1. In (2.2), let γ = 2m. Then, the key equation (2.1) is written as

(σ′)2
∣∣∣σ′

σ

∣∣∣2m−1

− g0(2m − 1)
c2
0

(
x +

b0

g0

)
(σ′)2 +

2m − 1
2c2

0

= 0. (2.3)

The region of existence of the solution is divided into two parts: a region in which σσ′ ≥ 0 and a region in
which σσ′ < 0. In each of these regions, the modulus is uncovered by two methods. We write the sequence of signs
at the corresponding powers of the derivative depending on the signs of σ and σ′:

— If σσ′ ≥ 0, then (+,−, +);
— If σσ′ < 0, then (−,−, +).
In each of the above regions, the key equation has no more than two positive roots. To count the number of

negative roots, it is necessary to make the change σ′ → −σ′. In this case, however, the number of negative roots is
also not larger than two; consequently, the key equation has no more than four real roots in the region of existence
of the solution, and for it there exist no more than four integral curves passing through the same point. Theorem 1
is proved.

2. If γ = 2m + 1, the sequence of signs is retained.
3. If γ = 2m/(2n + 1), the change (σ′)1/(2n+1) → q reduces the key equation to Eq. (2.3), for which the

required statement was already proved.
4. If γ = (2m + 1)/(2n), the change (σ′)1/(2n) → q in the key equation again leads to Eq. (2.3). It should be

noted that this changes involves extracting a root of even order but this does not affect the number of roots since
the property of having fixed sign for the function σ was already taken into account.

5. If γ = (2m + 1)/(2n + 1), the change (σ′)1/(2n+1) → q reduces the key equation to Eq. (2.3), for which
the required statement was proved.

Thus, for all possible rational exponents γ, the dimension of the bundle of integral curves of the key equation
(2.1) does not exceed four.

For definiteness, we consider the case γ = 3. Making the change

x + b0/g0 → x, σ → |1/c0|X
in Eq. (2.1) and denoting p = dX/dx, we obtain

F (x, X, p) ≡ p4 − 2α2
0xX2p2 + X2 = 0, (2.4)

where α2
0 = g0/c2

0. Since the quantity g0x is positive, g0 and x should have the same sign. If g0 < 0, the change
x → −x reduces the given case to the case x > 0. Moreover, the change X ′ → −X ′ does not alter the form of
the key equation. Thus, without loss of generality, we can assume that g0 > 0. Equation (2.4) will be called the
key equation. It belongs to the class of implicit differential equations, is not integrated in quadratures, and has a
number of special properties [5].

3. Properties of the Solution of the Key Equation. Equation (2.4) defines a surface in the jet
space R

3(x, X, p), which will be called the equation surface (Fig. 1). The equation surface consists of four isolated
components which are symmetric about the Ox axis in the different octants of the space R

3(x, X, p). Equation (2.4)
is determined for x > 0. Each of the components is a two-ply sheet above the plane p = 0.

Lemma 1. The geometry of the key-equation surface in the space of 1-jets does not change with variation
in the problem parameter α0.

Proof. We write Eq. (2.4) as

p = ε1|α0|
√

xX2 + ε0X
√

x2X2 − 1/α4
0.

The parameter |α0| outside the radical sign does not influence the geometry of the surface; it only changes
the scale in the vertical direction. The parameter α0 under the radical sign influences only the position of the
discriminant curve by increasing or decreasing the distance from it to the Ox and OX axes; therefore, the equation
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Fig. 1. Surface determined by the key equation (2.4) in the jet space.

surface changes by shifting parallel to the plane x = 0 in the direction x > 0 in the case of a decrease in the
parameter and in the direction x = 0 in case of its increase. The composition of a shift and stretching does not
change the geometry of the equation surface.

Lemma 2. All solutions of Eq. (2.4), except for X ≡ 0, are strictly monotonic functions of the variable x.
Proof. Indeed, if p = 0, then X ≡ 0.
Lemma 3. The region Ω of existence of the solution of (2.4) in the plane R

2(x, X) is bounded by discriminant
curves. Exactly four integral curves of Eq. (2.4) pass through each point Ω.

Proof. Because the discriminant curve is given in the plane R
2(x, X) by the equations F = 0 and Fp = 0,

for Eq. (2.4) we have a criminant which consists of two components in the jet space R
3(x, X, p):

K1: p = 0, X = 0; K2: α4
0x

2X2 = 1, X �= 0, p2 = α2
0xX2. (3.1)

The components (3.1) correspond to the discriminant curves

DK1: X = 0; DK2: α4
0x

2X2 = 1, X �= 0. (3.2)

Equation (2.4) is biquadratic in p and can be resolved in the form

p = ε1

√
α2

0xX2 + ε0X
√

α4
0x

2X2 − 1 (3.3)

(ε0, ε1, ε2 = ±1). Real solutions of Eq. (2.4) exist only in the region Ω: α4
0x

2X2 ≥ 1, and at each point Ω, Eq. (2.4)
has exactly four solutions for p. This implies that exactly four integral curves of Eq. (2.4): C++, C+−, C−+, and
C−− pass through each point of the region Ω. Lemma 3 is proved.

Below, the manifolds K1 and DK1 are not considered since they have no physical meaning [on these man-
ifolds, ρ = 0, according to (1.10)]. Since the discriminant curve is the boundary of the region of existence of the
solution of (2.4), we denote DK2 as ∂Ω (Fig. 2).

The following theorem, proved in [7], is valid.
Theorem 2. For an even ν, the regular singular point T0 = (x0, y0, p0) of Eq. (2.4) is a stop point

if (∂νF/∂pν)G > 0 and it is a branch point if (∂νF/∂pν)G < 0, where ν is such that (∂F/∂p) = 0, . . . ,
(∂ν−1F/∂pν−1) = 0, (∂νF/∂pν) �= 0, and G = Fx + pFy. If ν is odd, then T0 is a uniqueness point.

Lemma 4. The discriminant curve of the key equation contains both regular and irregular singular points.
1. Each point of the discriminant curve that is not an irregular singular point is a branch point or a stop

point for the integral curves of Eq. (2.4).
2. Equation (2.4) has two irregular singular points of the type of a focus, whose position is defined by the

parameter α0.
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Fig. 2. Discriminant curve ∂Ω for X > 0 (dashed curve) and integral curves of
Eq. (2.4) (solid curves) C−+ (1), C−− (2), C+− (3), and C++ (4).

Proof. According to (3.1), Fpp = 8p2 �= 0 on the manifold K2. By Theorem 1, ν = 2 for Eq. (2.4); in this
case, G ≡ Fx + pFy = p(2X − 4α2

0xXp2) − 2α2
0X

2p2. Then, the condition G > 0 specifies the stop points on the
criminant. The set of solutions of this inequality is given by

{−1/α
4/3
0 < X < 0, p > 0} ∪ {0 < X < 1/α

4/3
0 , p < 0}. (3.4)

Similarly, the condition G < 0 specifies the branch points on the criminant:

{X < −1/α
4/3
0 , p > 0} ∪ {X > 1/α

4/3
0 , p < 0}. (3.5)

Inequalities (3.4) and (3.5) define the regular points of the criminant that are branch or stop points. The
first item of Lemma 4 is proved.

If G = 0, the system of three equations F = 0, Fp = 0, and G = 0 defines a discrete set of points on the
criminant and has two solutions in the jet space:

ξ1: (1/α
2/3
0 ,−1/α

4/3
0 , 1/α

2/3
0 ), ξ2: (1/α

2/3
0 , 1/α

4/3
0 ,−1/α

2/3
0 ).

The change of coordinates

x1 = x − x0, X1 = X − X0 − X ′
0(x − x0), p1 = p − p0

transforms the irregular singular point with the coordinates (x0, y0, p0) into the coordinate origin O(0, 0, 0). In the
neighborhood of the point O, Eq. (2.4) reduces to the differential equation of the first approximation [8]

α(X1)2 + β(x1)2 + γx1p1 + (p1)2 = 0, (3.6)

where

α = 2FX1/Fp1p1 , β = Fx1x1/Fp1p1 , γ = 2Fx1p1/Fp1p1 .

We introduce the following notation: ∆ = −4β + γ(α + γ) and δ = (α + 2γ)2 − 16β. In [8], the following theorem
is proved.
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Fig. 3. Integral curves of Eq. (2.4) (solid curves), the separatrix (dashed curve), and the irregular
singular point ξ2 of the key equation on the discriminant curve.

Theorem 3. For an irregular singular point O of Eq. (3.6), the following classification is valid:
1) If δ > 0 and ∆ < 0 or if δ > 0 and α + 2γ �= 0, the point O is a node;
2) If δ > 0 and ∆ > 0, the point O is a saddle;
3) If δ < 0 and α + 2γ �= 0, the point O is a focus;
4) If δ < 0 and α + 2γ = 0, the point O is a center.
Since Fxp = −4α2

0p(X2 + 2pxX), Fxx = 2p2(1 − α2
0(4pX + 2p2x)), and FX = 2X(1 − 2α2

0xp2), for the
points ξ1 and ξ2, we obtain α + 2γ = ±5/2, δ = −23/4, and ∆ = −3/2. According to Theorem 2, the points ξ1 and
ξ2 (Fig. 3) are irregular singular points of the type of a focus. Property 3 of Theorem 3 is proved.

The question of the existence of integral curves that start from the discriminant curve and do not return
to it is a fundamental one. Figure 3 gives integral curves of three types: 1) integral curves lying to the left of the
dashed curve and defined only on a finite interval of X ; 2) curves located to the right of the dashed curve and
continuing infinitely on X ; 3) the dashed curve (further called the separatrix), which separates the regions in which
the integral curves of the two types described above are defined. This curve is the integral curve which corresponds
to a certain limiting flow regime. In Sec. 5, it is proved that all these regimes indeed occur.

We note that the irregular singular points of the key equation disappear (move to infinity) as g0 → 0, which
agrees with the problem studied in [3], in which irregular singular points are absent if a constant force is absent.

4. Behavior of the Integral Curves of the Key Equation at Infinity. For a more complete description
of the integral curves, it is necessary to elucidate whether integral curves defined for any values of x exist and, if they
do exist, to investigate their asymptotic behavior as x → ∞. In (2.4), we transform from the variables (x, X, X ′)
to the new variables (t, q, q′), where t2 = 1/x and q2 = 1/(x2y2). In the new variables, Eq. (3.3) becomes

t4q′ = 2t3q + 2
√

2α0ε1ε2q(1 − q2/(8α4
0)) + O(t2, q2) at ε0 = 1; (4.1)

t4q′ = t3q +
√

2 ε1q
2/α0 + o(t2, q2) at ε0 = −1. (4.2)

For the further analysis of the solution, only the written explicitly leading terms on the right sides of Eqs. (4.1)
and (4.2) are important. This change transforms the discriminant curve into the straight lines q2 = α4

0, which
considerably simplifies the analysis. Equation (4.2) can be written as

th0q′ = a0q
m0(1 + ϕ0(q)) + f0(t, q), (4.3)

where h0 = 4, m0 = 1, a0 = 2
√

2 ε1β0, and ϕ0 and f0 are holomorphic functions of their arguments (β0 = const > 0).
According to the Poincaré–Bendixson theory [9, 10], the neighborhood of the point (0, 0) for Eq. (4.3) for specified
values of the parameters h0, m0, and a0 is divided into three sectors: two hyperbolic and one parabolic. The
behavior of the solution for ε0 = ε1 = ε2 = 1 is presented in Fig. 4.
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Fig. 4. Behavior of integral curves of (4.3) in the neighborhood of the coordinate origin.

Thus, for certain initial data, some integral curves of Eq. (4.3) enter the point O(0, 0), and, consequently,
the integral curves of the basic equation (2.4) exist for any values of X > 0 (the parabolic sector P ). The integral
curves lying in the hyperbolic sectors G+ and G− do not reach the point O(0, 0), and, hence, their corresponding
integral curves of Eq. (2.4) exist on a finite interval of X . The separatrix corresponds to the straight-line segment
{t = 0, q2 < α4

0 }. This behavior of the integral curves in the neighborhood of the singular point allows a conclusion
to be drawn on the asymptotic behavior of the gas motion. Depending on the start conditions, gas particle motion
can persist over infinitely long distances in the direction x or it can occur only on a finite interval of x an. This
depends on the ratio of the kinetic and potential energies.

For ε0 = −1 in Eq. (4.3), we have h0 = 4, m0 = 2, and a0 =
√

2 ε1/α0. In this case, the neighborhood
of the singular point is divided into two hyperbolic and one or two parabolic sectors. The data of the numerical
experiment confirm the existence of two hyperbolic and two parabolic sectors.

5. Characteristics and Sonic Line. We investigate the question of in which regions the flow described
by formulas (1.10) with H ≡ 0 is subsonic and supersonic.

Lemma 5. The points of the discriminant curve (3.2) in the plane R
2(x, X) are images of the invariant

sonic characteristics of system (1.10) defined in physical space by the equation x = x0. On the discriminant curve,
u2 = c2.

Proof. Writing the condition u2 = c2 in terms of the function σ: 1/σ′ = c2
0(σ

′/σ)2, we obtain the equation
p2 = X , which for the solutions of the key equation (2.4) has the form α2

0xX = 1. Lemma 5 is proved.
For H ≡ 0, solution (1.10) defines the two-dimensional steady-state gas flow in the plane R

2(x, y). In this
case, the following lemma holds.

Lemma 6. The integral curves of Eq. (2.4) coincide with the streamlines of the gas flow in the physical
plane.

Proof. The streamlines in the physical plane are defined by the equality dx/u(x, y) = dy/v(x, y), which in
terms of the function σ has the form σ′dx = σdy/y. Integration yields

y = y0σ(x), y0 = const. (5.1)
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The solution of the key equation (2.4) has the form X = X(x). In view of change (2.4), equality (5.1) implies
that in the physical plane R

2(x, y), x and y are related in the same manner as x and X in the phase plane R
2(x, X).

Lemma 6 is proved.
Lemma 7. The integral curves C+− and C−− for ε0 = −1 correspond to supersonic gas flows, and for them

the following inequality holds:

u2 > c2. (5.2)

The integral curves C++ and C−+ for ε0 = 1 correspond to gas flows for which transition through the sound velocity
is possible, and for them the following inequality holds:

u2 < c2. (5.3)

Proof. In view of (2.4), expression (5.2) is equivalent to the inequalities

{−X < p2 < X, X > 0} ∪ {X < p2 < −X, X < 0}. (5.4)

Substituting p2 from (3.3) into (5.4), in the region Ω of existence of the solution of inequality (5.4), we obtain

Ω: α2
0xX > 1. (5.5)

Inequalities (5.4) have no solutions for the integral curves C++ and C−+ and are satisfied identically for the integral
curves C+− and C−−. Similarly, we find that the system of inequalities (5.3) and (5.5) is satisfied identically for
the integral curves C++ and C−+ and is not compatible for the integral curves C+− and C−−. This implies that
the integral curves C+− and C−− describe supersonic flow. For the integral curves C++ and C−+, inequality (5.3)
is satisfied, and, therefore, on these curves, transition through the sound velocity is possible.

Lemma 8. For the gas flow defined by solution (1.10) for H ≡ 0, the image of the sonic line S: |u| = c in
the plane R

2(x, y) is given by the equation

y2 = (σ(x)2A2
0 − c2

0)/A0,

where x is the initial physical variable, σ(x) is a solution of the key equation (2.4) in the variables (x, σ(x)), and
A0 = g0x + b0 is the total energy of the particle.

Proof. Substituting the equation of the sonic line u2 + v2 = c2 into the Bernoulli integral u2 + v2 + c2

= 2(g0x + b0), we obtain the system of two equations

u2 + v2 = g0x + b0, c2 = g0x + b0. (5.6)

The second of them has the form (σ′)2 = σ2(g0x + b0)/c2
0. Substitution of this expression into the first equation

of (5.6) written in terms of (1.10) yields (1/σ′)2 + y2/σ2 = g0x + b0. As a result, we have

y2 = (σ(x)2(g0x + b0)2 − c2
0)/(g0x + b0),

quod erat demonstrandum.
The numerical experiment shows that the image of the sonic line is in the field of existence of the solution

in the plane R
2(x, X).

6. Flows with a Stationary Shock Wave. We consider gas flow with a fixed shock wave, whose front
is defined by the equation x = x0. Let pi, ρi, and ci be the pressure, density, and sound velocity, respectively,
and ui the gas velocity components normal to the front ahead of the shock front (i = 1) and behind it (i = 2).
Then, for a polytropic gas with the equation of state pi = S0iρ

3, the following conditions at the discontinuity —
the Rankine–Hugoniot relations — hold [2]:

ρ1u1 = ρ2u2; (6.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
1; (6.2)

3p1/ρ1 + u2
1 + g0x0 = 3p2/ρ2 + u2

2 + g0x0. (6.3)

The velocity components tangential to the front are conserved in passing through the discontinuity:

v1 = v2. (6.4)
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The Zemplén theorem holds: the absolute value of the velocity component ui normal to the shock front is higher
than the sound velocity ci ahead of the shock front and lower than the sound velocity behind the front:

u2
1 > c2

1, u2
2 < c2

2.

The statement of the Zemplén theorem is equivalent to the statement that the entropy increases in passing through
the discontinuity:

S02 > S01.

We write formulas (1.10) for the states on the opposite sides of the discontinuity in terms of the function
X = X(x) for H ≡ 0:

ui =
c0i

X ′
i

, vi =
yc0i

Xi
, w = W0, ρi = R0i

X ′
i

Xi
, Si = S0i, pi = S0iρ

3
i . (6.5)

In this case, condition (6.4) becomes

X2 = (c02/c01)X1. (6.6)

Since ρu = R0c0/X , from (6.6) and (6.1) it follows that R0i is conserved:

R01 = R02 = R0. (6.7)

Substitution of c2
0 = 3S0R

2
0 into (6.6) yields

X2 =
√

S02/S01 X1. (6.8)

We substitute the solution representation (6.5) into the expression p + ρu2 and replace the derivatives of the
function X(x) from (4.3). By virtue of (6.7) and (6.8), the obtained equality is simplified and becomes

D4
1 + X2

1

D1X1
− D4

2 + X2
2

D2X2
= 0, (6.9)

where

Di =

√√√√ g0x0

3S01R2
0

X2
1 + (−1)i

√
g2
0x

2
0

9S2
01R

4
0

X4
1 − X2

i .

The condition of energy conservation at the discontinuity (6.3) coincides with the Bernoulli invariant inte-
gral (1.9) and, hence, with Eq. (2.4) and does not impose additional constraints: the conservation of the constant
b0 follows from the general Bernoulli integral, and the term g0x is constant at the discontinuity. Thus, the key
equation (2.4) is condition (6.3) at the discontinuity. The arbitrariness in the choice of the solution ahead of and
behind the shock front is determined by the arbitrariness in the choice of the integral curves of Eq. (4.3).

We summarize the obtained results in the form of the following statement.
Theorem 4. For the solution of (6.5) and (2.4), conditions (6.1)–(6.3) at the discontinuity are equivalent

to the finite relations (6.8) and (6.9), which link the values of the solutions X1 and X2 of the differential equation
(2.4) at the discontinuity front x = x0.

This result is also valid for motion in the absence of the force [11].
Relation (6.8) specifies a one-parameter family of straight lines with the slope R

2(X1, X2) in the plane of
states s =

√
S01/S02. According to the Zemplén theorem, 0 < s < 1. Equation (6.9) defines a certain curve in this

plane. Each straight line (6.8) corresponds to the class of shock transitions, the self-conjugation of solutions of the
form (6.5) with the specified ratio S01/S02 = s2. The points of intersection of straight line (6.8) with curve (6.9)
define the pairs of states (X1, X2) conjugate through the shock wave. Thus, curve (6.9) can be called the shock
adiabat that characterizes the possible shock transitions for the given solution (6.5).

7. Analysis of the Shock Adiabat. Because the key equation (2.4) admits the involution J : X 
→ −X ,
and the regions of definition of the solution for X > 0 and X < 0 do not have common points, we assume, without
loss of generality, that X1 > 0 and X2 > 0.

Transformation of equality (6.9) yields

kX1(1 − X2
1/X2

2 ) =
√

kX2
1 − X2

2/X2
1 +

√
kX2

1 − 1, (7.1)
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where k = g0x0/(3S01R
2
0). In the above form formula (7.1) is inconvenient for investigation. We make the change

of variables (X1, X2) → (t, q), where

t = X2/X1, q = X1. (7.2)

In the variables (7.2), Eqs. (7.1) is written as

kq(1 − 1/t2) =
√

kq2 − t2 +
√

kq2 − 1. (7.3)

Equation (7.3) is resolved uniquely for the variable q:

q =
t2

k

√
−k2t2 + k2 + 2

√
k4t2 + k3t4

k(−4t4 + kt4 − 2kt2 + k)
. (7.4)

This is valid because q > 0, and, hence, of the four possible roots of Eq. (7.3), two negative roots may not be
considered. By virtue of the Zemplén theorem and (6.8), we obtain t > 1. This implies that the region of the
possible shock transitions is ∆ = {(t, q): t > 1, q > 0}. In the region ∆, of the two remaining roots, the real root is
the one defined by formula (7.4). We note that as the value of k changes, the function q(t) defined by formula (7.4)
changes behavior. Indeed, the values of

t+ = 1
/√

1 − 2/
√

k, t− = 1
/√

1 + 2/
√

k (7.5)

are roots of the denominator of the radicand and depend significantly on the value of the parameter k; the root
t− < 1 for any values of k. However, t+ �= 0 (t+ ∈ iR) for k < 4 and t+ > 1 for k > 4; for k = 4, the denominator,
which is generally a fourth-order polynomial in t, becomes a square binomial. With the change (7.2), the straight
lines (6.8) are given by the equation

t = const. (7.6)

7.1. Case k < 4. According to (7.5), for k < 4, solution (7.6) exists for all t > 1. In addition, the following
lemma is valid.

Lemma 9. In the case k < 4, solution (7.4) has the following asymptotic behavior as t → ∞:

q ∼ t

k

√
k +

√
k

4 − k
.

Proof. In (7.4), it is only necessary to insert t2 under the radical and let t to infinity.
7.2. Case k > 4. For k > 4, the denominator in (7.4) has a second positive root, which, in addition, is larger

than unity. Since the numerator of the radicand is strictly larger than zero for all values of t, real solutions (7.4)
exist only for t ∈ (t−, t+). In this case, the following lemma, which is an analog of Lemma 9, is valid.

Lemma 10. In the case k > 4, solution (7.4) has the following asymptotic behavior as t → t+:

q ∼ F0/
√

t+ − t2, F0 = const.

The proof is similar to the proof of Lemma 9.
7.3. Case k = 4. In the case k = 4, we write (7.4) as

q =
t2

4

√
t2 + 1 +

√
t4 + 4t2

2t2 − 1
. (7.7)

The following statement is valid.
Lemma 11. The function q(t) defined by (7.7) has the following asymptotic behavior as t → ∞:

q ∼ t2/4.

The proof is similar to the proof of Lemma 9.
The behavior of the shock adiabat and the straight line (7.6) differs from the case k < 4 only in that the

adiabat has a different asymptotic behavior as t → ∞.
Using the results obtained above, we formulate the following theorem.
Theorem 5. Any state ahead of the discontinuity (X1, S01) corresponds to a pair (X2, S02), where X2 is

calculated from Eq. (6.9) and S02 is calculated according to (6.8).
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Proof. The three cases considered above describe all possible versions of the behavior of the shock adiabat.
In each of them, it has a single (single-valued) branch of type (7.4), which, by virtue of Lemmas 9–11, has one and
only one point of intersection with the straight line (7.6) on the plane (t, q). This implies that the shock adiabat
assigns exactly one value of t∗ = X2/X1 > 1 to each value of q∗ = X1. Thus, the state X2 behind the discontinuity
is calculated by the formula

X2 = q∗/t∗.

Then, we substituted the pair (X1, S01) into (6.9) and solve the obtained equality for X2. Then, substituting
(X1, S01) and X2 into (6.8), we uniquely calculate S02. Theorem 5 is proved.

8. Flow Pattern in the Physical Plane. Let us give a physical interpretation of the solution obtained.
8.1. Interpretation of the Continuous Solution. In formula (3.3), the parameter ε1 specifies the flow regimes

(a value of +1 corresponds to the source and a value of −1 to the sink). The flow pattern is determined by how
the gravity and the motion of the gas jet are oriented relative to each other. If they are unidirectional, the source
occurs; if they are opposite in direction, the sink takes place.

In case of the source, the following regimes of motion are possible.
1. The gas jet is accelerated and moves to infinity.
2. The gas jet is accelerated and moves to infinity with a different asymptotic behavior (the separatrix case).
These regimes correspond to integral curves of the type C+−, and the second case is the limiting case of the

first one (the dashed curve in Fig. 3).
3. The particles stop at a finite distance from the point of issue (flow of particles from one surface onto the

other). The stop occurs in spite of the fact that the jet moves in the direction of the gravity force. The reason of this
is that the motion of gas particles differs from the motion of material particles by the presence of the resistance of
the medium — pressure. Gas particles expend additional energy to move forward. The start point of such particles
cannot be arbitrary: it is related to the value of the problem parameter α0 (see Lemma 3).

In the case of the sink, the gas motion occurs as follows.
1. The gravity force stops the gas particle flow coming from infinity.
2. The gravity force stops the gas particle flow coming from infinity with a different asymptotic behavior

(the separatrix case).
Both regimes correspond to integral curves of the type C−+. Again, the second case is the limiting case of

the first one. From a physical point of view, there is a certain condensation surface, on which the particles that
arrive are accumulated and which plays the role of a surface of zero potential level.

3. Stop of the gas particles at a finite distance from the sink is possible.
8.2. Interpretation of the Strong-Discontinuity Solution. According to formula (5.1), the behavior of the

integral curves of the key equation (2.4) is similar to the behavior of the streamlines of steady-state plane gas
flow (1.10). Figure 5 shows a shock transition in the physical plane at x = x0 (curve 2 is an integral curve C+−
that defines the flow ahead of the shock wave, curve 3 is an integral curve C++ that defines the flow behind the
shock wave). The point of intersection of these integral curves in the plane R

2(x, X) corresponds to the shock wave.
The motion of the gas particles in space corresponds to the motion of a point in the plane (x, X) along the integral
curves. At x < x0, the point moves along curve 2, and at x > x0, it goes over into curve 3.

Conclusions. The study of the submodel showed that the region of existence of the solution in the phase
plane R

2(x, X) is bounded by a discriminant curve. All regular points of the key differential equation were considered
and classified. The existence of irregular singular points was established and shown to significantly complicate the
investigation of the model and qualitatively change the flow pattern.

From a physical point of view, the model describes two-dimensional steady-state gas flow in a constant force
field. In this case, the discriminant curve is a source for p > 0 and a sink for p < 0. The asymptotic behavior of
the solution as x → ∞ was studied.

The sonic characteristics of system (1.10) were studied, and the equation of the sonic line was obtained. It
was proved that the sonic line is located in the region Ω of existence of the solution. During passage of the gas
flow along the integral curves C++ and C+− in this region, a continuous transition from supersonic to subsonic
flow occurs. Analogs of the shock-adiabat equation and the Michelson straight line were obtained. A feature of the
problem in question is the strong dependence of the behavior of the shock adiabat on the problem parameter g0,
the position of the shock front x0, and the value of the entropy ahead of the front S01.
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Fig. 5. Curves in the plane (x, y) that define a shock transition: the bound-
ary of the region of existence of the solution (1) and integral curves C+− (2)
and C++ (3); the point corresponds to the shock transition.

Because the arguments H are Lagrangian coordinates and are continuous in passing through the discontinuity
x = x0, the given construction of the shock transition is extended to general solutions of the form (1.1), in which
the function H �= 0.

Of interest are the physical interpretation of the irregular singular points ξ1 and ξ2 and the construction of
a shock-wave solution for the maximally general gas equation of state. In this case, the nonlinear dependence on
the derivative in the key equation (2.4) is defined by the equation of state [the function I = I(ρ)].

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00080) and the
foundation “Leading Scientific Schools of Russia” (Grant No. NSh-5245.2006.1).
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